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A THEORETICAL INVESTIGATION OF THE EFFECT OF PARTIAL WING
LIFT ON HYDRODYNAMIC LANDING CHARACTERISTICS
OF V-BOTTOM SEAPLANES IN STEP IMPACTS

By Joseph L. Sims and Emanuel Schnitzer
SUMMARY

A theoretical investigation is made of the motions and hydrodynamic
loads experienced during the impact of prismatic V-bottom seaplanes in
the step-landing condition where the wing 1lift is a constant fraction of
the weight and the resultant velocity is normal to the keel. An approxi-
mate method is given for applying the results of this investigation to
the more general case of oblique impact. This method involves obtaining
an equivalent normal impact for any given oblique impact and then assuming
that the percentage change in load due to a change in wing 1ift is the
same in both oblique and normal Impacts.

Equations are presented which relate the load and motion variables
throughout a normal impact and it is shown that these variables may be
expressed as dimensionless quantities which are related by a single
parameter A. This parameter depends on the unbalanced wing 1lift force,
the initial conditions of the impact, and the hydrodynamic characteristics
of the seaplane.

The results of the investigation are presented in the form of dimen-
sionless plots which may be used directly to determine the loads, motions,
and hydrodynamic pitching moments at any instant of the impact. These -
results suggest that the increase of hydrodynamic load is approximately
133 percent of the decrease in air load.

INTRODUCTION

The present paper is concerned with an evaluation of the effects of
reduced wing lift during water landings of wide-beamed prismatic V-bottom
seaplanes. Previously hydrodynamic theory was developed for oblique
impacts in which the wing 1ift was equal to the weight of the seaplane
for the entire range of trim and flight-path angles. (See, for example,
ref. 1.) This theory has been checked experimentally and was found to
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agree fairly well with the experimental results. A solution of seaplane
impact equations for partial wing lift was presented in reference 2.
This solution, however, was obtained by assuming the float to be of
infinite length, to enter the water at zero trim, and to have the mass
and wing 1ift unlformly distributed along its length.

The purpose of this paper is to present the solution of equations
for seaplane impacts with constant partial wing 1lift where the resultant
velocity is normal to the keel and to discuss the applicability of these
results to the more practical case of oblique seaplane impact with par-
tial wing 1lift.

The present investigation differs from the treatment given in
reference 2 for partial wing 1ift in that the theoretical analysis of -
this paper is made for positive trims; whereas the analysis of refer-
ence 2 was made for O° trim. The proposed normal -impact theory permits
a closed-form solution to be made from which generalized curves can be
constructed. Although a similar analysis could be made for the case of
obligue impact with partial wing 1ift, such an analysis would require
numerical methods for solution and would lead to a greater number of less
general curves. The results of the normal~impact analysis can be used,
however, in treating approximately the oblique case by the simple method
described in the text. The use of this simple method would result in a
substantial time saving over that required by the use of a detailed numeri-

cal procedure.

SYMBOLS

Ca nondimensional draft coefficient, zA

. ) . F ‘.
CFv - nondimensional vertical hydrodynamic-force coefficient, Vg

: , Wz A
Cy  nondimensional vertical acceleration coefficient, - - ZA
' Z
o

nondimensional pitching—moment coefficient about the step-keel

Mg
point, ( )%L%—— sin T cos T

Cy - nondimensional time coefficient, tZpA
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Fy vertical component of hydrodynamic force
g acceleration due to gravity
L seaplane wing 1ift in vertical direction (a constant percentage

of the seaplane weight)

M pitching moment
t time after contact
W seaplane weight
z - draft of keel at step, normal to undisturbed water surface
éi vertical-velocity ratio
20
B angle of dead rise, deg
£(B) dead-rise function
Y flight-path angle relative to undisturbed water surface, deg
K approach parameter, Si2T_ cos(T + 7o)

Dp 1Y b sin 70 o

2 1/3

, ¢ [£(8)] o(a)on

A impact geometry constant, <=
: 6 sin T cong
A unbalanced-lift-force parameter, (1 - L\_¢&
. ) W éOQA

P mass density of water
T trim
p(A) aspect-ratio (end-flow) correction to total hydrodynamic load
Subscripts:
e effective value

f oblique-impact case
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1 condition of wing 1ift equal to weight

-
k ' condition of wing 1lift less than weight -
m referring to pitching;moment solution
o initial cond?tidns
s conditions at step | ’ - . )

A dot over a symbol represents differentiation of that parameter
with respect to time.

ANATYSIS

Basis of Theory

In the present analysis the following assumptions are made: The
impact is assumed to occur at constant trim with no penetration of the ' .
chines below the water surface; the resultant velocity is assumed to be
normal to the keel with the wing lift vertical and equal to a constant

fraction of the seaplane weight throughout the impact. v
The verticai component of the hydrbdynamic force ‘for an impact where
the resultant velocity is normal to the keel is given by the follow1ng
- relation:
(6] o(a)
£B)] ¢lA)ory 3. ° o,
v = (z3z + 32222) - (1)
6 sin T cos°T
Which was obtained from equation (12) of reference 1 for this case, where
f(B) = 55 - l
and
V tan‘T
A) =1 « —m— . ‘
@(4) 2 tan B : ’ , .
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Equations of Motion
If the foregoing assumptions regarding wing 1ift are used, the
equation of motion is determined by the application of Newton's second
law to this hydrodynamlc force equation. The equation of motion then -
becomes

2

E(B)] @(A)Dﬂ( 3.. 2.2) _ w<1 - P.) ‘ (2)‘

27z + 32 2 T

Zz =

!
mi=

6 sin T coser

This equation expresses the general relationship that exists among the
variables at any time during the impact. The equation may be expressed
as ,

(l+A33)z+3A322-g( -%) (3)

’ ~ where
v . 2 1/3
| [£(8)] o(a)on

W § sin T cos2T

and can be 1ntegrated to obtain the follow1ng relationship between the
draft and the vertical velocity:

. 2 '
(1 + A;z3) ;2 - 2( - %)g(; + 23 %;) + 52 (&)

When equation (L) is integrated, the relationship between draft and time
is obtained: '

i ’ .
b4 L 2 .
z+A3_h=(-W).gt+tzo )

Equations (3), (4), and (5) may be expressed in terms of the following
nondimensional variables which were introduced in reference 1

cy = -2 . (6)
5,21
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Cq = zZA - A7)
Cy = tzoh | (8)

Equations (3), (4), and (5) then become, respectively,

27.7\2 3
c
(1 + cd3> <i> - 2ACg <1 + —@—) +1 | (10)
Z0o )-l- s ) ‘
cal1 2y =22 11
a + T = 'é C‘b + Ct ( )

where

For any given value of A equations (9), (10), and (ll) give the rela-
tionships that exist among the nondimensional variables during an impact.

Hydrodynamic Force

In contrast to the equations of reference 1 in which the hydrodynamic
load was equal to the inertia force, the 1ift force and weight are not
balanced for the equations developed herein. The load on the hull bottom
is obtained from equation (1), which can be expressed in terms of the non-
dimensional variables as follows:

CF, = M + Ci (12)
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where

Hydrodynamic Pitching Moments

The hydrodynamic pitching moment about the step-keel point for a -
fixed-trim, step-landing 1mpact of a seaplane is given by equation (16)
in reference 3. For the case where the resultant velocity of the sea-
plane is normal to the keel this equation becomes

s = 2 . b
6 sin“T COS3T

o N

vhere @, (A) is similar to o@(A). Equation (13) mey be written in terms

of the nondimensional variables as

| o\ 2 c.c |
Cn = Ca’ <;Z;> -5 (14)

where the pitching-moment coefficient about the step-keel point is defined
by .

C. = %__( )girly'sin Tcos T (15)

Bs Zq 2\W/op (A

In this paper oy (A) is assumed to be equal to @(A).
RESULTS AND DISCUSSION

The equations presented in the analysis permit the preparation of
dimensionless plots which may be used directly to determine the loads,
motions, and hydrodynamic pitching moments at any instant of the impact.
The relations between the nondimensional variables describing the loads
and motions during normal impacts are given in figures 1 to 6 for a range
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of values of the nondimensional unbalanced-lift-force parameter X from
0 to 2. These plots indicate that the acceleration, velocity, draft,
hydrodynamic force, and: pltchlng moment increase with decreasing wing
1lift (since A increases with decrea51ng wing 1ift).

Figure 3 shows that the draft approaches infinity as time increases
without limit because the buoyancy of the float is neglected. The dashed
line gives the value of the nondimensional draft at the time of maximum

nondimensional acceleration.

In figure 7 the maximum nondimensional vertical hydrodynamic
force Cpy is plotted against the‘unbalanced—lift-force parameter ' A.

The dashed line on this figure is a straight line approximating the func-
tion. Thus, the agreement between the two lines shows that the maximum
value of this force is an increasing approx1mately linear function of the

unbalanced-lift-force parameter.

The physical significance of the nondimensional plots can be visualized
from figure 8. 1In this figure the difference between the ratio of maxi-
mum vertical hydrodynamic force to weight for the case where the wing 1ift
is less than the weight and for the case where the wing 1lift is equal to
the weight (as obtained from the straight-line approximation of fig. T)
is plotted against a function of the lift-to-weight ratio. The incre-

. {F
mental hydrodynamic load factor Axw%) 1is seen to vary from O to 1.33
max
as the wing 1ift goes from a value equal to the weight to 0. This curve

. . F F :
is valid for all values of <7§> where <7¥> is the maximum
Imax lmax

»

nondimensional vertical impact-load factor for the condition where the
wing 1ift is equal to the weight. This curve indicates that the increase
in hydrodynamic load due to a decrease in wing lift is approximately

133 percent of the decrease in air load. Thus, the effect of wing 1ift
~on landing loads is greatest for large seaplanes that have low design
impact loads and could result in a 4h-percent increase in load for a large
flying boat landing with an impact-load factor of 3 if the wing 1lift is
varied between a value equal to the weight and O. For lower design impact
accelerations the effect of wing 1lift is greater. The variation of 1lift
that appears in the abscissa of figure 8 can be expressed as a function
of A, the maximum load factor for 1lift equal to weight, and the maximum
generalized load factor of 0.6 for the condition of normal impact in refer-
ence 1. Inasmuch as the usual range of interest of impact-load factors

is from 1 to 10, the relationship expressed in the abscissa of figure 8
gives an indication of the ranges of A that will be encountered. If

the wing 1ift is O, this range varies from a value of A of 0.06 where
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Fy | [Fy .

(TF) is 10 to a value of A of 0.6 where (TT) ~is 1. If the
Imax _ Imax

ratio of wing lift force to weight is between O and 1 the values of this

maximum range of A will be decreased. When the wing 1ift balances the

weight, the value of A is O.

APPLICATION TO OBLIQUE IMPACT

The effect of wing lift on the vertical acceleration and the ver-
tical hydrodynamic load experienced during a normal impact may be used
in an approximate method to find the effect of wing lift during an
oblique impact. As a first approximation, the effect of wing 1ift is
assumed to be the same for normal and oblique impacts having the same
values of maximum acceleration and the same time to maximum acceleration.
This assumption appears to be valid up to the point of maximum accelera-
tion, since in this region the time histories of the normal and oblique
impacts have similar shapes (see fig. 8 of ref. 1). Consequently, by the
use of this assumption, the time histories of the vertical acceleration
and the vertical hydrodynamic load for any oblique impact are computed as
follows: ,

(1) Obtain a value of the approach parameter k for the oblique
impact from the equation

sin T
K = EITV—(; cos (T + ')’o) (16)

where 7T is the trim and 7o 1is the initial flight-path angle.

(2) Compute an effective initial vertical velocity ﬁoe from the

equation

C C
. ( Ylmax tlmax)f - o215 [ c (17)
Zoe = Zg (C - . 3 Z0 ( Zlma_'x_ tlmax)f 7

MG TN B

where Cllmax and Cty .~ are obtained from figures 9(c) and (@) of

reference 1. The symbol Czlm designates the maximum vertical accel-
ax .
eration coefficient and Ctlmax designates the corresponding time

coefficient.
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(3) Compute an effective value of the impact geometry constant Ae

from the equation ‘

[(Ctl ma.;ln =0 _ 0.305A . (18)
™ CllmJ ot o]

Ae = A

where
1/3
E‘(B] CP(A o |

2

6 sin T cos®T

£(8) = 2o - 1

tan T

o(A) =1 "2 tan B

(4) Compute an effective value of the unbalanced-llft-force param-
eter A, from the equation

e = (1- %)33555; / (19)

(5) Use these effective values of éo 5 Mg, and A, in the plots

of this paper to obtaln time histories of the acceleration and hydro-
dynamic load during oblique impact at constant partial wing 1ift up to
the point of maximum load factor.

To illustrate, consider for example the case of a flying boat landing
with the following geometric characteristics and initial conditions at
water contact: '

W = 50,000 1b | zo, = 10 ft/sec
B = 25° p = 1.97 slugs/cu ft
T =90 = 25,000 1b
7 = 6°
o
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SUMMARY

A theoretical investigation is made of the motions and hydrodynamic
loads experienced during the impact of prismatic V-bottom seaplanes in
the step-landing condition where the wing 1lift is a constant fraction of
the weight and the resultant velocity is normal to the keel. An approxi-
mate method is given for applying the results of this investigation to
the more general case of oblique impact. This method involves obtaining
an equivalent normal impact for any given oblique impact and then assuming
that the percentage change in load due to a change in wing lift is the
same in both oblique and normal impacts.

Equations are presented which relate the load and motion variables
throughout a normal impact and it is shown that these variables may be
expressed as dimensionless quantities which are related by a single
parameter A. This parameter depends on the unbalanced wing lift force,
the initial conditions of the impact, and the hydrodynamic characteristics
of the seaplane.

The results of the investigation are presented in the form of dimen-
sionless plots which may be used directly to determine the loads, motions,
and hydrodynamic pitching moments at any instant of the impact. These
results suggest that the increase of hydrodynamic load is approximately
133 percent of the decrease in air load.

INTRODUCTION

The present paper is concerned with an evaluation of the effects of
reduced wing 1lift during water landings of wide-beamed prismatic V-bottom
seaplanes. Previously hydrodynamic theory was developed for oblique
impacts in which the wing l1ift was equal to the weight of the seaplane
for the entire range of trim and flight-path angles. (See, for example,
ref. 1.) This theory has been checked experimentally and was found to
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